Estimating Actin Fiber Orientation using Interpolation-Based Grey-Level Co-Occurrence Matrix Computation
نویسندگان
چکیده
A novel interpolation-based procedure for the computation of the grey level co-occurrence matrix is defined. Based on this procedure, a method for accurate texture orientation estimation is designed. The robustness of the method is tested against Gaussian noise and blurring. The method is applied to cell microscopy images for the characterization of actin subcellular arrangement.
منابع مشابه
Image Retrieval System Based on Feature Computation – an Integrated Approach
The idea proposed in this paper utilizes an efficient image retrieval system that is based on computation and combination of grey level, shape and texture features. The proposed system calculates various grey level features which are used to extract attributes from an input image. Grey Level Co-occurrence Matrix is used to compute the texture feature of a given image while the Shape feature fin...
متن کاملCharacterization of collagen fibers by means of texture analysis of second harmonic generation images using orientation-dependent gray level co-occurrence matrix method.
Collagen is the most prominent protein in the human body, making up 30% of the total protein content. Quantitative studies have shown structural differences between collagen fibers of the normal and diseased tissues, due to the remodeling of the extracellular matrix during the pathological process. The dominant orientation, which is an important characteristic of collagen fibers, has not been t...
متن کاملDynamic Texture Classification using Combined Co-Occurrence Matrices of Optical Flow
This paper presents a new approach to Dynamic Texture (DT) classification based on the spatiotemporal analysis of the motion. The Grey Level Co-occurrence Matrix (GLCM) is modified to analyse the distribution of the magnitude and the orientation of the Optical Flow which describes the motion. Our method is therefore called Combined Co-occurrence Matrix of Optical Flow (CCMOF). The potential of ...
متن کاملRapid extraction of image texture by co-occurrence using a hybrid data structure
Calculation of co-occurrence probabilities is a popular method for determining texture features within remotely sensed digital imagery. Typically, the co-occurrence features are calculated by using a grey level co-occurrence matrix (GLCM) to store the co-occurring probabilities. Statistics are applied to the probabilities in the GLCM to generate the texture features. This method is computationa...
متن کاملDirectional Grey Level Co-occurrence Matrix- based Attributes for Fracture Detection
SUMMARY The grey level co-occurrence matrix (GLCM) is a measure of the texture of an image. It describes how often different combinations of pixel brightness values occur in an image. Based on this, several textural attributes can be calculated. These directional attributes can be used to determine isotropic and anisotropic areas. In anisotropic areas the information of directional GLCM-based a...
متن کامل